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ABSTRACT. In this paper we conclude the analysis started in [3] and continued in [4] con-
cerning the behavior of the asymptotic dynamics of a dissipative reactions diffusion equation
in a dumbbell domain as the channel shrinks to a line segment. In [3], we have established
an appropriate functional analytic framework to address this problem and we have shown
the continuity of the set of equilibria. In [4], we have analyzed the behavior of the limiting
problem. In this paper we show that the attractors are upper semicontinuous and, moreover,
if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous
and therefore, continuous. The continuity is obtained in L? and H! norms.

1. INTRODUCTION

This paper is concerned with the continuity of the asymptotic dynamics of a dissipative
reaction-diffusion equation in a dumbbell type domain as the channel degenerates to a line
segment. Here we conclude the analysis started in [3], where we studied the continuity of
the equilibria, and continued in [4], where we studied the limiting problem. We refer to the
introduction in [3] for a broad perspective of the problem.

More precisely, we consider a reaction-diffusion equation of the form

w—Au+u= f(u) zeQ.

1.1
0y, v € 00, (L)
on

where, for N > 2 and ¢ € (0,1], Q. € RY is a typical dumbbell domain; that is, two
disconnected domains, denoted by €2, joined by a thin channel, denoted by R.. The channel
R. degenerates to a line segment as the parameter € approaches zero, see Figure [l We refer
to [3] Section 2, for a complete and rigorous definition of the dumbbell domain that we are
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considering. We mention that the channels R. considered here are fairly general and are not
required to be cylindrical.

Q

€

FiGurg 1. Dumbbell domain

The limit “domain” consists of the fixed part €2 and the line segment Ry. Without loss of
generality, we may assume that Ry = {(x,0,...,0) : 0 <z < 1}, see Figure 2 of [4].

The limit equation is given by
(wy — Aw+w= f(w), z€Q, t>0

ow
% = 0, x € 0f)
(1.2)
vy — %}(gvx)x +v=[f(v), z€(0,1)
L v(0) = w(F), v(l) = w(P)

where w is defined in €2, v is defined in Ry and F,, P, are the points where the line segment
touches the boundary of 2. Observe that the boundary conditions of v in (0,1) are given
in terms of a continuity condition, so that the whole function (w,v) is continuous in the
junction between €2 and Ry. The function g : [0, 1] — (0, 00) is a smooth function related to
the geometry of the channel R., more exactly, on the way the channel R, collapses to the
segment line Ry, see [3]. For instance, if the channel is given by R, = {(x,ex’) : (z,2') € Ry},
for some fixed reference channel Ry, then g(z) = {2’ : (z,2") € Ri}|n-1, where | - |y_1 is
the (N — 1)-dimensional Lebesgue measure, see [3].

In [3] we have studied how the equilibria of behave as the parameter ¢ tends to zero.
Since the spaces to which the equilibria belong also vary with e, we developed an appropriate
functional analytical setting to compare these functions as well as deal with this singular
perturbation problem. We have constructed the family of spaces U?, 0 < ¢ < 1, in )., which
is the space LP(€).) with the norm

1
foclly = [ P+ [l
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Observe that the integral in R. has the weight 1/e¥~! which amplifies the effect of a
function in the channel. As observed in [3] a constant function in R. will converge to zero
if we do not introduce the appropriate weight (1/¢¥~1). In this setting, we showed that the
appropriate limit space should be Ug = LP(Q) @ L?(0, 1); that is, (w,v) € Ug iff w € LP(52),
v € LP(0,1). The norm in U} is given by

1
lw.ollgy = [ P+ [ glop
Q 0

If A, : D(A.) C UP — UP is given by A.(u) = —Au+u for 0 < e < 1, and Ay : D(Ay) C
Ul — UY is given by Ag(w,v) = (—Au + u, —%}(gvm)x + v), we proved in Proposition 2.7 of

[3] that A-? = Ayt Moreover, considering the equilibria of 1' and ‘) in an abstract
way, as the solutions of

Aou = F.(u), € €0,1],

with F. being suitable Nemitskil maps, or as fixed points of the nonlinear maps A-! o F. :
UP? — UP, we showed the convergence of the equilibria see Theorem 2.3 of [3]. Also, if the
equilibria of the limiting problem are hyperbolic, we proved the convergence of the
resolvent of linearizations around the equilibria and the convergence of the linear unstable
manifolds.

In [4] we studied in detail the properties of the limiting problem in terms of generation of
linear singular semigroups by the operator Ay, local well posedness and existence of attractor
for the associated singular nonlinear semigroup. We also show that, when all equilibria are
hyperbolic, the attractor of the limiting problem (which is not gradient) can be characterized
as the union of the unstable manifolds of the equilibria.

As we mentioned in the introduction of [3], our final objective is to compare the whole
dynamics of problems and . That is, to prove the continuity of the attractors
as € tends to zero. To accomplish this goal, we proposed an agenda based on a deep and
thorough study of the linear part of the problems consisting on the study of the convergence
properties of the resolvent operators. That agenda was established in the introduction of 3]
and consisted of six items. The first three were covered in [3].

In this paper we consider the last three items of that agenda and complete the analysis.
Hence, we show the convergence of the resolvent operators (A + A.) ™! to (A+ Ag) ™! and use
this information to obtain the convergence of the linear semigroups. With the variation of
constants formula and the convergence of linear semigroups we show the convergence of the
nonlinear semigroups, from which the upper semicontinuity of the attractors follows easily.
This is done in a very similar manner as in [2].

Finally, if each equilibria of the limitting problem is hyperbolic, with the convergence of
the equilibria and of its linear unstable manifolds, we show the convergence of the local
nonlinear unstable manifolds of equilibria. Using the gradient-like structure of the limiting
equation we prove lower semicontinuity (and therefore the continuity) of the attractors.

Next, we describe contents of the paper. In Section [2| we recall the general setting of the
problem and state the main results of this paper; that is, the upper and lower semicontinuity
of the attractors. In Section |3| we study the convergence of the resolvent operators associ-
ated with the linear operators obtaining rates of convergence of equilibria and of resolvent
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operators associated to the linearizations around equilibria. Based in the resolvent estimates
obtained in Section [3] we analyze in Section [4] the convergence of the linear semigroups. In
Section [5| we obtain the continuity of the nonlinear semigroups and the upper semicontinuity
of the attractors. In Section [0] and, under the assumption that all equilibria of the limiting
problem are hyperbolic, prove that the local unstable manifolds behave continuously as e
tends to zero. The continuity of local unstable manifolds is the key step to show the con-
tinuity of the attractors. Finally in Section [7] we analyze the continuity properties of the
attractors in other norms.

Acknowledgement. We thank Antonio L. Pereira for several helpful comments on the
estimates of Sections [3l and [4l

Special dedication. The question of the continuity of attractors of reaction-diffusion equa-
tions in dumbbell domains, as it is addressed in this paper as well as in [3], 4], was raised by
Jack K. Hale and a great amount of the ideas and techniques explored in the three articles
were proposed initially by him. The authors are specially grateful for his permanent support
and motivation and would like to dedicate this work to him on the occasion of his 80th
birthday.

2. SETTING OF THE PROBLEM AND STATEMENT OF THE MAIN RESULTS

The setting is the same as the one we established initially in [3]. We recall some of the
terminology which will be needed to study the continuity of attractors.

Consider the spaces UP and U§ defined in Section [I] see also [3]. Let 0 < ¢ < 1 and let
A.: D(A.) CU?P — UP, 1 < p < o0, be the linear operator defined by

D(A.) = {u € W*() : Au € U, u/dn =0 in 09, },
Au=—Au+u, ue D(A,).

Also, for p > £, let Ao : D(Ao) C U§ — U§ be the operator defined by
D(Ap) = {(w,v) € Uy : w € D(AR), (gv)" € LP(0,1), v(0) = w(Fy), v(1) = w(P1)} (2:2)

(2.1)

Ao(w,v) = (~ dwtw, _%] (@) +0). (w.v) € D(Ay), (2.3)

where A% is the Laplace operator with homogeneous Neumann boundary conditions in LP(£2)
with D(AY) = {u € W2P(Q) : 3 =0 in 9Q}.

We note that, for p > & we have that D(AY) is continuously embedded in C(€2). In that
case, the functions in D(A%) have well defined traces at Py and P;.

Recall that we have defined in [3] the operator M. : U? — U[, as follows

Ve (2), z €0

U(z,y)dy, =€ (0,1),

Tz[ Jr:

where 2 = {y: (z,y) € R.}. It is easy to see, from Fubini-Tonelli Theorem and Holder
inequality, that M. is a well defined bounded linear operator with || M|,z yry = 1.
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Also consider the family of extension operators E. : Uj — UP defined by

| w(z), z€Q
Ee(w,v)(z) = { v(s), (s,y) € R.. (2.5)
It is very easy to see that || E.(w,v)|yz = [[(w,v)|yp-

The operator A. generates an analytic semigroup {e?<! : t > 0} on UP whereas, from the
results in [4], the operator Ay generates a singular semigroup in U} that we will denote by
{e=Aot . t > 0}, see [].

We rewrite (1.1) and (|1.2)) in the abstract form

us + Asus = fs(us)
{ u(0) = u € UP (2:6)
and )
u + Aou = fo (u
{ u(0) = up € UY (2.7)
With respect to the nonlinearity f, we will assume that

(i) f: R — R is a C? function,
(i3) 1 £ ()] + |F/(w)] + | £"(w)] < C for all u € R.

Remark 2.1. From the point of view of studying the asymptotic dynamics (continuity of
attractors), the assumption (ii) does not imply any restriction on the nonlinearities. Since
we are assuming that f is dissipative, under the usual growth assumptions, the attractors are
bounded in L>(2.) uniformly with respect to € € [0, 1] and one may cut the nonlinearities to
make them satisfy the above assumptions (See Remark 2.2 of [3] ).

Under these assumptions, the nonlinear semigroups {7.(¢) : t > 0} in U? associated with
and the singular semigroup {Ty(¢) : ¢ = 0} in U}, p > N/2, associated with (2.7),
have compact global attractors A. C UP and Ay C UJ respectively (see [4]). In general, the
attractors lie in more regular spaces and in particular, from comparison arguments, they lie
in UZ® and U§°.

The following concept of E-convergence has been proved to be very appropriate when
dealing with sequences of functions in different spaces, see [14] [7, [3].

Definition 2.2. We say that a sequence {uc}oc(0,), ue € UP, E.—converges to ug € Uj if
e — Ezuol|pr =20 (see (2.5]) for the definition of E.). We write this as u. 5 .

This notion of convergence can be extended to sets in the following manner (see [7]).
Definition 2.3. Let A. C U?, ¢ € [0,1] and Ay = A C U§. Denote by dist(-,-) the metric
induced by the norm in UP, € € [0,1], i.e. dist(ue,v:) = ||us — vellyr.

(1) We say that the family of sets {A:}ecoq) s E--upper semicontinuous at € = 0 if
sup,,_c 4. dist(ue, E.A) =Lo.
(2) We say that the family of sets {Ac}ecpoq) is E--lower semicontinuous at € = 0 if

e—0

supye4 dist(Fou, A.) — 0.
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Remark 2.4. In order to show the upper or lower semicontinuity of sets, the following
characterizations are usefull

(1) If any sequence {u.} with u. € A. has an E.—convergent subsequence with limit
belonging to A, then {A.} is E.—upper semicontinuous at zero.

(2) If A is compact and for any u € A there is a sequence {u.} with u. € A., which
E.—converges to u, then {A.} is E.—lower semicontinuous at zero.

With all this concepts in mind, our main result is the following,

Theorem 2.5. The family of attractors {A:}ecjo,1) i Ee- upper semicontinuous at € =0 in
U?P for every 1 < p < oo.

Moreover, if every equilibria of the limit problem is hyperbolic, then the family of attractors
is also E.- lower semicontinuous at € = 0 in UP for every 1 < p < o0o.

Remark 2.6. Observe that once the statement of Theorem is shown for a particular
p = 1, then from the boundedness of the attractors in U and US®, it will also be proved for
all 1 < p < o0.

Now consider the spaces U}? = W12(Q) & W?(R.) with the norm

||Ue||2UEL2 = ||Ua||%vl,2(sz) + mHUsH%VL?(RE) (2.8)

and Uy® = WH2(Q) @ W2(0,1) with the norm

1
I, o)y = lwlfinaq + [ glleal +1of)
0

Observe that the spaces U}? do not coincide algebraically with the spaces W12(€,) since we
are allowing the functions of U!? to be discontinuous at 92 N IR..
We also prove that

Theorem 2.7. The family of attractors {Ag}ge[m} 18 E.- upper semicontinuous at € = 0 in
U2,

Moreover, if every equilibria of the limit problem is hyperbolic, then the family of attractors
is also E.- lower semicontinuous at € = 0 in UM%

3. CONVERGENCE OF RESOLVENT OPERATORS

In this section we analyze the convergence of the resolvent operators associated to the
elliptic operators A, defined in Section , that is, we study the convergence of (A, + \)~! —
(Ag+A)~! as e — 0 with X in some region of the complex plane.

The convergence of resolvent operators is used, in Section [4, to analyze the convergence
properties of the linear semigroups e~ — e~40* as ¢ — 0, with the aid of the expression

1

e At = / M (A + NN, >0
r

271
where I' is an appropriate unbounded curve in the complex plane.
Moreover, since we need to analyze also the convergence properties of the linear semigroups
associated to linearized equations around equilibria, that is e~ (Ae=/"()t g e=(Ao=F(ug)t a5 ¢
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tends to 0, where u} and u are equilibria for , and , respectively, we will also need to
study the convergence properties of the resolvent operators (A, +V.+ )"t — (Ag+Vo+ )7t
as € — 0 for the potentials V.(z) = —f'(ui(z)) and Vo(z) = —f'(ui(x)). To show this
convergence we will need to obtain some rates of convergence of the equilibria u} to ug.

We have divided the section in several subsections. In Subsection [3.1, we analyze the
convergence of the resolvent operators for a fixed potential and in Subsection we analyze
the case of a potential which depends on the parameter €. In Subsection we obtain some
rates of convergence of the equilibria and use this rates to obtain the convergence of the
resolvent operators of the linearized operators around the equilibria.

3.1. Rate of convergence of resolvent operators: The case of a fixed potential.
Consider a complex potential Vy = (Vq, Vg,) € Ug°. Often, we write Vj for E.Vy € L>®(€.).
Consider also the operator in L£(LP(2.)) and in £(U}) which is the multiplication by the
potential V. We denote this operator again by Vj, that is, Vp(u.) = (E.Vp)u. = Voue and
Vo(w,v) = (Vow, Vg,v).

Let us assume that Reo(Ag+Vy) > § > 0. It follows from of [3, Proposition 3.13, Corollary
3.14] that, for all suitably small e, Reco(A: + Vo) = 0 > 0.

The operator A, + V; is sectorial and the following estimate holds

__c
DS+ 1

where 3y = {A € C: |arg(\)| < 7—0},0 <0 < § and C is a constant that does not depend
on ¢, although it depends on p and blows up as p — oco. This estimate follows from the fact
that the localization of the numerical range in the complex plane can be done independently
of e, see [13].

We know that, for any 0 < e < 1, the operator A, + V; is a sectorial operator in U? and
the following result holds

O+ A+ Vo) er o for A e Xy, (3.1)

Lemma 3.1. For any bounded linear operator J : LP(§).) — LP().) we have

—N+1
[l cwry < N lleroywry < €7 [l (3.2)
Proof: The proof of this result follows immediately from the norm estimate
—N+1
I lloz < e 7 llzr - (3-3)
which follows directly from the definition of the norm in U?. n

In particular, from Lemma and from estimate (3.1)), we have that for all A € ¥

—N+1
E P

A+ 17

As for the limit problem, from [4], we have the following result.

Proposition 3.2. The operator Ag + Vy defined by (2.2)) has the following properties
i) D(Ao + Vo) is dense in UJ,
ii) Ag + Vy is a closed operator,
iii) Ag + Vo has compact resolvent and

I+ Ae + Vo) Ml zwry < N+ Ac + Vo) 2oy oz < O for A€, (3.4)
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iv) Ao+ Vo : D(Ao+ Vo) C UY — UL is such that, p(Ag + Vo) D Xp where Ly ={\ € C:
larg(\)| <7 —0},0< 0<%, and forp >q > 5,

I+ Ao+ Vo) g < Ty (35
1O+ Ao + Vo) Yo < oo (3.6)
0 A+ 1
1O+ Ao+ V) Lo gy < s (3.7)
R !
foreach0<a<1—ﬁ—l(l——)<1 and A € ¥y.

v) If By is the realization of Ao in C’(Q) @ LP(0,1) we have that By is a sectorial operator
in C(Q) ® L5(0,1) with compact resolvent. Therefore —By generates an analytic
semigroup e~ in C(Q) & L(0,1).

The following result is crucial to the remaining results in this section and to the whole
program of the paper.

Proposition 3.3. If p > N and 2 < q < 00, there is a constant C, independent of €, such
that

IAZ fo = BAAG M. foll o (v < CNP | felloe, (3.8)
HAa 1f5 - ESAO 1M6f€HLq(Qs) X < ceNe HfEHU§’> (3'9)

and
|‘A;1fs - EEAalMEszUg < Cgl/quEHUfa (3'10)

for all f. € UP.

Proof: The inequality was proved in Proposition A. 8 in [3]. This estimate is the
key estimate for [3] and also for the complete analysis we are performing in the dumbbell
domains.

Observe that in particular, from , we obtain that

1A e = EAGM M fel 1200y < O™ felloe. (3.11)
From [3, Lemma A.11], for p > N/2 we have
1AZ fell oo < Cll felloe- (3.12)
Also we know that if p > N/2, ||A51M£fg||Loo( oyor=0,1) < O M fe||r@@rr0,1) then
1EeAg M fel| 1 0.) < Cll fello (3.13)
which implies that
IAZ fe = B-AG M fellpeqoy < Ol fellor. (3.14)
For ¢ > 2, 1.} follows from (3.11)) and (3.14]) and interpolation. The estimate (3.10)
follows from (3.9) and (3.3). [

To obtain the resolvent convergence of A, + Vjy we strongly use the previous result and the
following uniform (with respect to ) estimate.
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Lemma 3.4. If Vj is such that (Ag + Vy) is invertible, for p > %, we have
1 E=(Ao + Vo) ™ Me |l cumy < C (3.15)
and, for each p > %, there is a constant C', independent of €, such that
1E-(Ao + Vo) " Me || iy < C. (3.16)

Proof: Statement (3.15)) follows from [|E.|[zwrury = [|Mel|zwrory = 1 (see [3]) and from
Proposition [3.2]

For (3.16) we proceed as follows. Let f. € LP(€.) and u. = (w.,v.) = (Ao + Vo) ' M. f.,
then

(—Aw, +w. + Vo(2)w. = f., Q,
ow
€ _ 0
o 0, 0
1
_5 (g(ve)s)s + v + VRO (S)Ua = Mafaa (07 1)
0:(0) = w-(Fy), v:-(1) = w(P).

Since p > %, we have that
[wellLe@) < C Nl fellr@)  and [Jwello@) < C | fellzr)-
In particular |w.(Fy)| + |w-(P1)| < C||fz||r()- Also
[0l 2o 0.1y < [we(Po)| + [we(Pr)] + [|Me fell o 0,1)

and
N-1 No1 No1
[Ecvellrry = &7 [[velleon) <& 7 (Jwe(Po)| + [we (1)) + &7 |Me fell ooy
< [we(Po)| + [we(PO)| + [ fell o)
< O fellr -
where we have used that || M, f:||zr(0,1) < e | f-llzr(r.). The proof is now complete.  m

The next two lemmas are resolvent identities which allow us (together with the previ-
ous lemma) to transfer information from the resolvent convergence of A. to the resolvent
convergence of A, + Vj.

Lemma 3.5. If (Ag + Vi) and (A: + Vy) are both invertible the following identity holds
(Ac+ Vo) ™' — E.(Ag + Vo) ' M.
- [] - (Aa + V(J)_l‘/()](Ae_l - E6A51M€>[[ - EEVO(AO + VO)_IME]~
Proof: Since (I — (A, + Vo) 'Vo)(I + AZ'V,) = I, the identity (3.17) is equivalent to

(AZ! — BELAG'ML)(I — E-Vo(Ag + Vo) M,) =
= (I +AZ'VH)((Ae + Vo) ' = E(Ao + Vo) ' M.).

(3.17)

(3.18)
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Using that Vo(Ag + Vo)™t = T — Ag(Ap + Vo) ™! and expanding the left hand side of
we have
(AZh = ELAGI ML) (I — EVo(Ag+ Vo) ™' M.) = AT — ATTEVo(Ag + Vo)™ M.
— E.A' M. 4+ E.AG (I — Ao(Ag + Vo) ) M.
= A7 = AZTEVo(Ao + Vo) Me = Eo(Ao + Vo) M,
On the other hand, using that AZ! = (I + AZ'V;)(A: + V) ! and expanding the right hand
side of , we have
(1 + AZTVo) ((Ae + Vo) ™' = Ee(Ap + Vo) ™' Me)
= A" — E.(Ag+ Vo) ' M. — ATTE V(Ao + Vo) M.
which proves . ]
In a very similar way we also have,
Lemma 3.6. If (Ao + Vo) and (A: + V) are both invertible, the following identity holds
(A + Vo) = E-(Ag+ Vo) ' M, = (3.19)
[I — E.(Ag + Vo) "VoMJ(AZT — E.AGI M) [T — V(A + Vo).
Proof: The proof is similar to the one provided for the previous lemma. [ |

We are now ready to prove the main results of this section

Proposition 3.7. If p,q > N, (Ag+ Vo) : D(Ay) C Uy — UL has bounded inverse and
fe € UP, then

(A + Vo)™ fe = BL(Ao + Vo) ' M. fellaay < C ™ felle, (3:20)
where C' depends on ||(Ao + Vo) 'l cwr.ury and on ||[Vo||ze<, but not on € or f..

Proof: Let us start pointing out that if (A + Vo) is invertible, from [3] we also have that
(A. 4+ Vp) is invertible for all suitably small e. Hence (3.20)) makes sense.
Adding and subtracting the appropriate term in (3.17) we have:

(A + Vo) — E-(Ag+ Vo) ' M.
= (—(Ac+ Vo) 4 E(Ao + Vo) "M Vo(AZY — BLAT ML) (I — VoE-(Ag + Vo) ™M)
+ (I = E-(Ag + Vo) "M Vo) (AZ! — ELAG ML) (I — VoE-(Ap + Vo) 'M.).
Let us first estimate
Oc = ((Ac + Vo) ' — E-(Ag + Vo) ' M)Vo (AL — EL A ML) (I — VoE-(Ag + Vo) ' Me)
Note that, from inequality and we have that
JAZY — E.AG M| e ory < Ce'/P and ||AZ! — E A7 M| cwr paay) < CceMNa.

Since
Vollczagoey < ClIVollzeq.) and [Vollzwry < ClIVollze(o.),
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it follows from (3.15)) that
18cll 2w Loty < CVPI(A:+ Vo)™ = Eo(Ao + Vo) M|z Lagan))-

where C' = C(||Vp||r=(q.)) is independent of e. Choosing ey such that Ce'/? < 1, for all
e € [0, 0], we have that

[(Ac 4+ Vo)™ — Eo(Ao + Vo) ' Me|l cwe Logeny
< 2H(I - EE(AO + VO)ilMsvl))(Aail - EEA61M€)<[ - V()EE<A0 + %)71M5)“£(U§,LQ(QE))'
Now, from and there is a constant C', independent of ¢, such that
(I = VoE-(Ao + Vo) "' M) |l cory < 14 ClIVoll ()
I(1 = E-(Ao + Vo) T MVo) [l cqpaony < 1+ Cl[Voll=(a)
Therefore, using ,
(A + Vo) ™ = E(Ao + Vo) " Me|l cr paganyy < C M,

where the constant C' does depends on ||Vp||r=(q.). This shows the proposition. n

3.2. Rate of convergence of resolvent operators: The case of a varying potential.
We are going to study now the convergence properties of resolvent operators of the form
(A + W)™ to (Ag + Wy) ™!, where W, converges to Wy in a sense to be specified. We need
to perform this study since we want to compare the resolvent operators of the linearizations
around equilibria. Hence, we will have a family of equilibria w} which will converge to an
equilibria of the limiting problem wuf and we will need to consider the operators A. — f’(u})
and Ay — f'(ug) and analyze the convergence properties of their resolvent.
Having this in mind, let us consider the following setting for the potentials,

(H) V. € L>*(Q.), Vo = (Va, Vr,) € U® be two potentials which satisfy that V|, |[Vy| < a
for some a > 0 and such that for N < ¢ < oo we have
e ||Ve — EVollgogy — 0, ase — 0 (3.21)
Denote by W, = V. +a, Wy = Vo +a = (Vo + a, Vg, + a) so that W, and Wy are
positive and they also satisfy an estimate like (3.21]) substituting V. and V; by W,
and Wy respectively.

As we did in Subsection [3.1] let us identify the potentials W., Wy with their corresponding
multiplication operators.

With this notation and writing A, = A. + W, we have that the operator A. is sectorial
and the following estimate holds

C
A+ 17
where ¥y = {A € C: Jarg(A\)| < 7 —0}, 0 < < § and C is a constant that does not depend
on ¢ (that follows form the fact that the localization of the numerical range in the complex

plane can be done independently of ¢), however it depends on p and blows up as p — oo,
see [13].

” ()\ + Ae)il HL(LP(QE)) < for A € Eg, (3.22)
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We know that, for any 0 < € < 1, the operator A. is a sectorial operator in U? and the
following result holds

Lemma 3.8. For all A € ¥y we have that

—N+1
_ _ g »r
I+ M) Mgy < N+ A) M ceoy oz < Cm- (3.23)
Proof: It follows immediately from (3.22)) and from Lemma n

The following result follows easily from the properties of resolvent operators. It is crucial

to obtain convergence properties for resolvent operators from the convergence properties of
AZt to At

Lemma 3.9. As an immediate consequence of (3.5) and - there s a constant C'

suchthat,forall)\egg,p>q>% and0<a<1— —————
1B+ Ao) ™ Mo oy < w% (3:24)
B0+ 80) ™ Mol iy < (3.25)
: A +1
and
IEA 4 Ao) ™ M| ey ory < C (3.26)

where C' is a constant that does not depend in €.

We have now the following key result, which is analogous to Proposition and Proposi-

tion B.7]
Proposition 3.10. For p,q > N and f. € U? we have
N
IAZ o = BAAG M fe|l paony < Cle + [We = E-WoMe||Laony) || felluz- (3.27)
with C' independent of € and f..

Proof: Let f. € UP and let u. = AZ'f. = (A. + W.)"!f.. Consider the auxiliary function,
Ue = (As + EEWO)_lfsa Le.,

_Aus+us+ Heus :fsa Qs7
3.28
{ Gue =0, Q.. (3:28)
_Aﬁs"i_as_'_ ”07:55 :fsa Qea
_ 3.29
{ e =0, Q.. (3:29)

From comparison results, it is easy to see that |u.| < 4. where

{—A'L_LE—FTTLE = |f€‘7 Qea

8“5 _
i 9.

Applying Lemma A.11 of [3], we have that
[e]| @) < Cllfellyr  forp > N/2 (3.30)



DYNAMICS IN DUMBBELL DOMAINS 13

which implies

e || ooy < Ol felloe-

Next, observe that
u. = (Ac + E-Wo) M fe + (Ac + EJWo) M (E.Wy — Wo)u,
ug = (Ao + Wo) ' M. f..
Hence,
e — ESUOHLQ(QE)

< [(Ac+E-Wo) ™' = E.(Ao+Wo) " M. fe|| ooy + | (Ac + E-Wo) (W — E-Wo ) ue|| Lagan)
< Ce || felluz + Cll(A: + B-Wo) leqwaoonIWe = E-Woll o llue 1o

< O + Wz = E-Wol o) | oz

where we have used (3.20) and the fact that that there is a constant C, independent of
and of ¢ € [1, 00|, such that ||(A: + Wo) || z(ra(o.y) < C. This shows the lemma. ]

As an immediate corollary, we have
Corollary 3.11. For p,q > N we have
e T |AZY = BN M| pwr paganyy — 0 as € — 0. (3.31)
Proof: We just need to apply the previous proposition and hypothesis (H). [ ]

Now consider a compact subset K of the complex plane which is contained in the resolvent
set of the operator Ag. Let ¢(K) be a positive constant such that

sup [|(A + AO)_IHL(Ug,Ug) < o(K).
AeK

Also, let 3y :={z € C : |arg(z)| < 7 — 0}, for 0 < 6 < 7/2.

Proposition 3.12. For p,q > N, there exists a constant C = C(K,0), a number eg > 0
and a function n(e) — 0 as € — 0 such that for each N € K UXy and 0 < e < g9 we have

_N-1 _ _ —a
e 7 I+ A) T = Ec(AN+ M) Ml g paganyy < C (L4 [A)n(e), (3.32)
wher60<a<1—2ﬂp<1

Proof: Observe first that the spectrum of the operators A, and Ag are subsets of [1, +00).
Hence, if A € 3y both (A+ A.)~! and (A + Ag)~! make perfect sense for 0 < ¢ < &.
Moreover, by the compact convergence of A-! — Ag', the convergence of W, — W, and
since [|(A + Ao) Ml zwropy = [N+ Vo 4 Ao) Ml ewropy < ¢(K) for each A € K which is a
compact set in C', we have that (A + A, + V) and (A + A, + V}) are invertible for 0 < & < ¢
and A € Ag and [[(A + A) "l gwropy < E(K), for some constant ¢(K) and for all A € K.

If this is not the case, then we could get a sequence of ¢, — 0 and \, — A € K such that
(An +Ac,) "l 2ur vpy — +oo. But this is in contradiction with the compact convergence of

(A +A2) " to (A4 Ag) ™!, see Lemma 4.7 of [3].
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Hence, with this argument and with and we obtain
INA+AD) gz < C, for A€ KUY, (3.33)
[EAA+ Ao) ' M| ce pry S CA+ A1), for A e KU, (3.34)
with0 < a<1-— QEp < 1. Applying Lemma with Ag in place of Ag and A in place of Vj,
we have
A+ Ae) ™ = E.(A 4 Ao) ™ M| cwe pagony) <

H[ + )‘()‘ + AE)A”E(L‘Z(QE))HAgl - E€A51M€H H[I - Es)‘()‘ + AO)ilMs]Hﬁ(Ué’)

LUE,L9(Qe))

SO+ AT = BN M| <CT (14 A7 )n(e)

L(UE,L9(Q¢))

where n(e) = e IAZY — BAAG M| pwe pag.yy — 0 as e — 0 by Corollary [3.11] This
proves the proposition. |

Remark 3.13. The results of Proposition|3.12] also hold for the operator A. instead of A.,
that is with W, = Wy = 0.

Corollary 3.14. In the conditions of Proposition |3.12, we have the following estimates,
IO+ A7 = BLO0+ A0) ™ Mol oe.vmy < O (1+ A =")n(e). (3.35)
I+ A) " e ey < O+ AT) (3.36)

Proof: To prove (3.35) we just use that e I Newe oy < - llewewe in (3.32). To
prove (13.36]) we just use (3.35) and (3.24]), to obtain

— —« C —«
I+ A) Ml ewr vy < O+ N)n(e) + SO+,

Al +1 7
as we wanted to show. [

These results play a fundamental role on the convergence of the linear semigroups for it
will ensure the uniform convergence of the integrals defining them and will allow us to pass
to the limit.

3.3. Rate of convergence of hyperbolic equilibria and of its linearizations. In this
Subsection we will obtain rates of convergence of hyperbolic equilibria which, besides being
interesting by themselves, they show that if we consider the potentials V. = —f'(u}), Vo =
— f"(u§) then hypothesis (H) from Subsection [3.2|is satisfied, with a = sup{|f(s)| : s € R}.
This will ensure that all the results from Subsection apply for A, = A — f/'(u}) + a and
AO = AO — f/(ug) + a.

Proposition 3.15. Let uj be a hyperbolic equilibrium for and (from the results in [3])
let u® be the sequence of hyperbolic equilibria for (1.1) satisfying that u’ E-converges to ug.
Then, for ¢ > N, we have
lu? — Eeupl agey < Ces (3.37)
and .
e 7 |lul = Eaygllygr — 0,  ase — 0. (3.38)
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Proof: Let uf = (wg,v§) be a hyperbolic equilibrium point for and u} an equilibrium
point for with ||ul — E.uf||ye =20. For Vo(z) = —f(ui(x)), we write
ul = (A + Vo) 7 (f(ul) + Voul) and ug = (Ao + Vo)~ (f (ug) + Voug)-
Hence, taking norms in L%(£2), we get
[uZ — Eoug|agay = [[(Ae + Vo)~ (f (u2) + Vouz) — E-(Ao + Vo) ™ (f(ug) + Voug) [ £a)
<I(Ae + Vo)™ = Ee(Ao + Vo) ™' Me) (f () + Vous )l ooy
+ [ Ee(Ao + Vo) T M [f (uZ) — Voul — Bo(f(ug) + VoMeEoug)| [l pace)
< C M f(uf) + Voull|aga.
+ (| B (Ao + Vo)™ Me[f (uf) — B f(ug) — Vo(ul — Beug)]|| oo
< CeMi+||EL(Ag + Vo) Meze || age)-

where z. = f(u?) — f(u$) + Vo(u: — ug) and we have used Proposition 3.7, the boundedness
of f" and that u} is also bounded in the sup norm uniformly in e.
We have

|2e(@)] = [f (uZ(x)) = f(ug(2)) + [ (Eeug (@) (ul(z) — Ecug(z))]
<O @) = f1(Beug(@))] (ul(z) — Eeug(x))]

Juf(xz) + (1 —0(z))Euf(x) and 0 < 0(z) < 1, x € Q..
| < C we have,

where x*(z) = 0(z
Using that |f'(-)

[2ellr (@) < Cllui — Eeugllpr), V1 <7 < +oo.
Also,

zellzro) < M1 (XE(@)) = f/(Eeug (@)l

ot = Bl +=5+7
But
1F () = F(Bag(@)] =0y < C
1 () = f (Be(2)) |2y < ClXE(@)) = Bew(@) |1y < Cllul — B 110
) = F(Eau(@)|l 1) < Cllut — B i) So

* x(|1/s * * * * g
lzellre) < Clluf — Boug|| it Il — Eevgllceoy < € flus — Eaugll ey
But if we define w. = E.(Ay + B) ' M. 2., we know from ({3.16] that

|we||Lay < C| 2| L) for somer < q.

1 1 1 1 1 1
Hence we can choose — = — 4+ - (t=¢,— =—— - >0). So
r s q s r q

Hence, using interpolation || f'(x%(x)

_ 47—
|1E-(Ao + B) ™' Mz Loy < Cllzellri) < Clluf uo||Lq

Hence L
+T
[uf = ugll oy < CN9+ Cllur = ugll pagy
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Since we know that |ul — uf|ra) — 0 (since |Jul — ug|lpr — 0 as ¢ — 0) then |Ju} —
ug|lLe) < C eN/a_ which shows the first statement of the lemma. For the second one, we
just realize that

N-1 N—1
Juz — il pagy + Jui — whllary < C N+ Co(e e ) =o(c 7 ).
That is,
_N-1
e 7 ||lul —ug|lLeo.) — Oase — 0.

Corollary 3.16. In the conditions of Proposition if we denote by V. = —f'(u?), Vo =
—f'(uy) and a = sup{|f'(s)|; s € R}, then hypothesis (H) from Subsection [3.2) is satisfied.
Hence, all the results of that Subsection can be applied to the case where the potentials are

given by Ve = —f'(u?) and Vg = —f'(u5).

Proof: Since
N—1

Ve = EVollzagany = I1F/(ul) — E-f'(ug)l| Loy < 17 e llul — Bougllzao,) = o(e @),

the result follows. n

4. CONVERGENCE OF LINEAR SEMIGROUPS

In this section we analyze the convergence properties of the linear semigroups generated
by the operators A. + V., Ay + Vi where the potentials V., V; satisfy hypothesis (H) from
Subsection [3.2] Later on we will be interested in applying the results from this section to
the semigroups generated by A., Ag and also by A. — f/(u}) and Ay — f'(ug), where u?,
are hyperbolic equilibria of the perturbed and limit problem respectively.

As in Section 3.2] let W. = V. +a > 00, Wy = Vi + a > 0, (see hypothesis (H)) and
A=A+ W, Ay = Ay + W

As we have already seen in [4], the operators —Ag, —(Ag + V) and —Aq do not generate
strongly continuous semigroups in U}. Nonetheless they generate certain singular semigroups
as we briefly recall.

Let 39 = {A € C: |arg(A\)| < m— 0}, 0 < 6 < T and let I' be the boundary of ¥4 oriented
such that the imaginary part grows as A runs in I'. Notice that the semigroups generated by
—Ag and by —(Ag + Vj) are related by a multiplicative factor of the form e®.

Proceeding as in [4] we define

1
hot= — [N (At Ag)THdN, >0 41
e A S DR (4.1)

Then, e "0 satisfies the semigroup properties but strong continuity fails at ¢ = 0 for
data which are not sufficiently smooth. Nonetheless, several of the properties of analytic
semigroup will still hold for sufficiently regular data. We say that {e=%o! : ¢ > 0} is the
semigroup generated by —Ay and do not make any allusion to continuity. We refer to [4] for
a detailed study of the semigroup generated by —Ay.

In what follows we recall some simple properties of the semigroup {e=4* : + > 0} that we
will employed later in this paper.
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The next result investigates the singularity of {E.e™0!M, : ¢t > 0} at t = 0 in L(UP). Its
proof is a consequence of Proposition and (4.1)).

Lemma 4.1. For anyp>q> % and for 0 <a <1—%—L1(L -1y <1 there is a constant
q a »p
C, independent of €, such that
| Bee™ ™ Moul|pe < Ct* M ullge, t>0, welUY, (4.2)
and
| Be™ Mullpr < Ollullyse, t>0, ue U, (4.3)

From Lemma it follows that, —A. generates an analytic semigroup {e‘Aat it > 0} in
U?P given by

1

—Act At -1

= — A+A) T d\, t>0, 4.4
et = [ A (1.4
where I' C p(—A.) is the boundary of 34} oriented such that the imaginary part grows as A

runs in I'. Note that I' is independent of e. It follows from (3.22)), (3.23) and (4.4]) that the
following estimates hold

le " wllyy < Ce 7 fwllpr, 20, weU?, (4.5)
le ™ w| ooy < Cllwllir@), =0, we LP(Q), (4.6)

and
le M twlpr < Cllwlys, t>0, we U, (4.7)

for some constant C' > 0 that does not depend on e. That is, the linear semigroup e®<* is
bounded in £(LP(£2.)) uniformly with respect to e.

We analyze now the convergence properties of the semigroups. To accomplish this task
we will use extensively the resolvent estimates of the previous section applied to the integral
expression of the semigroup.

Proposition 4.2. There are v > 0, 8 € R, p,q > N and function p : [0,1] — [0, 00) with
p(e) =20 such that

He(AEJrVE)t — Ege(A‘)*VO)tMEHaUEp’Ug) < CeP'tple), t>0. (4.8)

Proof: Observe first that e~ (A=+Ve)t — F_e=(AotW0)t N f — eat(e=At _ | =Mt ) so that it
is sufficient to prove an estimate of the type (4.8) for the difference e=4<* — E_e=%0!M..
Since,

1
— B MM, = / (A A7 = Ec(A+ Ag) " Mo)eMd, (4.9)
v
T

it follows from Proposition that

At B MO cp ooy / (1 + A=) [eM]dA| ne)
N

== (e)
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and consequently

le™ <" — Eee™ " M,|| ppr sy < C 73 n(e).
On the other hand, by comparison (maximum principle) we have

||€—Ast . Eae_AOtMEHE(U;?O) < ||€_A5t||£(Ug°) + ”Eee_AOtMsHL(UgO) < C.
Noting that || - ||2 < ¢[ - ||z for some ¢ > 0 independent of €, it follows that
le™" — Ece™ ' M| o vy < C.

By interpolation (see [8, Theorem 6.27])

et — EeeiAOtMEHE(Uf,Ug) <Ot f (e).

where p < p < 0o and 0 < 0 < 1. Taking 6 small we can make 6(2 — a) < 1.
That is

HefAEt - EseontMs“z(U?,Ug) < Ct”n(é)e, v <L
Hence, if we define p(e) = n(¢)?, we have
He(AEJrVE)t - Ese(AOJrVO)tMsHL(UE,Ug) = efle ! — EseiAOtMEHL(U?,Ug) < Ce™tpe)

which shows the result with p(e) = n(e)? and 3 = a. ]

Let us consider now a real number b with the property that there exists a 6 > 0, small,
such that [b—9,b+d]No(—(Ao+Vp)) = 0. That is, the spectrum of the operator —(Ay+ Vj),
which is all real, is divided in two parts, of which is above b + ¢ and it is a finite set and
0, which is below b — § and it is an infinite set (a sequence that goes to —o0). From the
continuity properties of the spectrum, (see [3]) we have that for ¢ small enough [b — §,b +
d]No(—(A: + Vz)) = 0 and the spectra of —(A. + V.), which is also real, is divided in two
parts o, above b+ § and o_, below b — §. Moreover, we can choose a fixed closed curve
I c{z2€C:Re(z) >b+ (5} which encloses o for all 0 < & < g for some gy small.
Moreover, we denote by I',)’ = {z € C : arg(z — (b—0)) = 7 — 0} for some 0 < § < 7/2.

We decompose U?P using the projection

Q= Qo)) = L/ A+ Ao+ Vo) HdA (4.10)
Ty

21

Proposition 4.3. Forp,q > N large enough, we have that there are constants C' > 0, v < 1,
independent of € and a function p(e), with p(¢) — 0 as € — 0, such that fort >0

He*(AﬁVs)t(I . Q(O.;r)) E. e—(Ao+Vo)t ([ Q(Uo ))M HL(U” v Oebttf'yp(g) (4.11)
[ Bee™ Aot UT — Qo)) Mel| e ey < C et (4.12)
le™AF(T = Qo) | ey < Cet (4.13)
Proof: We have
1
—(Ao+Vo)t ([ Q(Uo )) 27”. /()\—i-Ao—l—%(:c))le’\td)\.

Ty
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Plugging norms and using estimate (3.5 we get

1 |€/\t|
—(Ao+Vo)t (17 + _ L
e = Qe Doy < |57 [ T
Ly

and elementary integration shows
e 4T — Qo )l cqwg gy < Ot (4.14)
which shows (4.12)) with v = a.

In a similar way,

" AV — Q(07)) = Bee™ TONT — Q(og)) M. =

1
5 (N A+ Vo)™ = E.(A 4 Ag + Vi(x)) "1 M) eMa.

Ty
So
le” T = Qo) — Eee™ T — Q(of ) Me | vz <

1

or | VIO A V@) = B+ Ao+ Vo) M ey

b

1
<o [ 10+ )y

Iy

< gebtt7(270¢)
2m

where we have applied Proposition [3.12, Therefore,

n(e),

le™“HIUT = Q(o)) — Bee™ (I — Qo)) M| e vy < Ot ¥(e).  (4.15)

This estimate does not show yet the proposition since the exponent 2 — a > 1. We will
do an interpolation argument to conclude with the correct estimate. For this, let us see now
that Q(of) : UP — UP satisfies ||Q(o )|z vry < C independent of €. To see this, just
observe that

1

= A+ A+ Vo)A

Q) = g [ (Ot e 72

Applying now the estimate of Propostion [3.12 we obtain that
1A+ A + Vo) Ml gery < C

for A € I', and with C independent of . From this last expresion and using the boundedness
of I'y we get [|Q(oF)||lzweory < O, forall 0 <e < 1.
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Moreover, for the limit semigroup and for 0 < ¢ < 1, we obtain from (4.14))
[Bee™ ot — Qo)) Me| ez vy < C°.
Hence for 0 < t < 1, we get that

||ef E+V5)t(1 Q(o; ))HL(UPUq Hef(AEJrvs)tHL(Ug’,Ug)(l"‘HQ(U;)HL(Ug’,Ug’))
C (e A0 — e AN oy + | Bue™ BN ) < O + 1)

where we are using the bounds given by Proposition
Hence, for 0 <t <1

e — Qo)) — Bee™ NI — Qo) Meleqruny < CE7 (416)
where 7 = max{vy,1 — a}.
Interpolating (4.15)) and (4.16) we obtain, for 0 < ¢ < 1,
le=tAerve <I Qo7)) — Eee™ 0TI — Q(o) Mel| oz vz < (4.17)
(Ct=Ep(e)*(Ct )10 < O B0y () (4.18)

where we have used that e < C for 0 < t < 1. Choosing § > 0 small enough so that
(2—a)f+ (1 —0)y < 1, we obtain the estimate for 0 < ¢ < 1.
Now for ¢t > 1, from (4.15) we get

e AT — Qo)) — Boe™Aort0 <1 Qo7)) M- ||,;Upm><06“n<€>

Putting together both estimates, we prove ({4.11). To prove we just use (4.11]) and
(4.12). This concludes the proof of the proposition. [

We also have

Corollary 4.4. For the case V. = Vo =0 and with b € (—1,0) a fired number, we have that
Q(cr) =0 for e small enough and we have

le™" — E.e™ " M. || cwr vay < C "t p(e).

Remark 4.5. Observe that we can consider the case where Vo = — f'(ufy), Vo = —f'(u}) with
ug and ul hyperbolic equilibria satisfying u’ converging to uf (see [3]). In thzs case, we can
always apply Proposition with b < 0, a number dividing the spectrum among the stable
part, that is with negative real part, and the unstable spectrum, that is with positive real part.

Let us conclude the section with the following useful unifom estimates of the semigroup
on the linear unstable manifold
Proposition 4.6. There are constants C' > 1 and 8 > 0 such that
AAVIQH | s vry < Ce', £ <0 (4.19)

e~

Proof: Observe that
e~ UtV — / M+ A, + Vo)t
T+
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Using ([3.36) and noticing that the curve I'" is bounded, we have
/ |e>‘t|d)\‘ < Ceft
T+

which shows the result. |

—(A
et

| cwevey <C

5. CONTINITY OF NONLINEAR SEMIGROUPS AND UPPER SEMICONTINUITY OF
ATTRACTORS

Now that we have obtained in the previous section the continuity of linear semigroups we
proceed to obtain the continuity of nonlinear semigroups using the Variation of Constants
Formula. After we obtain the continuity of nonlinear semigroups we will proceed to obtain
the upper semicontinuity of the family of attractors {A. : € € [0,1]}.

To this end we will follow the ideas in [I] that relate the continuity of the linear semigroups
with the continuity of the nonlinear semigroups for dissipative parabolic equations by using
the variation of constants formula. This in turn will imply the upper semicontinuity of the
attractors and the stationary states.

For ¢ € [0,1], let {T.(t) : t > 0} be the semigroups defined in U? by the variation of
constants formula

¢
T-(t,u:) = e Aty +/ e_AE(t_S)fE(Tg(s, ue))ds. (5.1)
0

If £ denotes the set of stationary states (2.6, ¢ € [0,&¢], it has been obtained in [3,
Section 5] that, {&. : € € [0,&0]} is upper semicontinuous at € = 0 in U?; that is,

sup | inf {||ul — E.uf| Ug’}] —0, ase—0 (5.2)
ureé. ug€€o

We are now in position to prove the following result

Proposition 5.1. There exists a 0 < v < 1 and a function c(g) with c(e) 280 such that,
for each T > 0 we have
|T2(t, ue) — ETo(t, Mous)||lpr < M(7)e(e)t™, te(0,7], u.€ A, €€ (0,8 (5.3)

Moreover, the family of attractors {A. : € € [0,&0]} is upper semicontinuous at € = 0 in UP,

in the sense that

sup [ inf {|lu. — Ecugllpp}| — 0, ase—0 (5.4)
0

ue€A, Luo€A

Proof: To prove this result we follow [I [7]. Notice that the nonlinear semigroups 7.(t)
are given by (b.1). Hence, estimating T.(¢,u.) — E.To(t, M.u.) and with some elementary
computations we obtain

|T2(t, ue) — ETo(t, Meue)|[gr < ||e_A€tuE — E’ae_AOtMeuaHUg

t
[ = B A £ ) ds
0

+/ | E.e™ (M, f-(To(s,u.)) — Jo(To(s, Mu.)))||yr ds, € € [0,e0].
0
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Note that

/O ||E€€_A0t(Maf6(Ts(sa us)) - fO(TO<S7 Meus)))HUg’ ds
- / | Eue 9 (M. fo(To (5, u2)) — MoE- fo(To(s, Mewe))) | ds

_ / |Eee M. (fu(To(s, 02)) — f2(B-To(s, Mool ds

where we have used that M.E. = I and that f.(E.u) = E.fo(u). Applying now Corollary
and Lemma [£.1] we have, for 0 < ¢t < 7,

t
||Ta(t,ua)—EeTo(t,Maua)HUs<Cebtt‘”ﬂ(f)||Ua||U5+CP(€)/ (t = 5) 7| fo(Te(s,ue)) o
0

t
+ c/ (t = ) To(s,u.) — ETo(s, Mous) e
0

But since we have uniform bounds in L>(€),) of all the attractors, the first two terms in the
above inequality can be bounded by Cp(e)t~7. The result now follows applying the singular
Gronwall’s lemma (see [11]).

To show the uppersemicontinuity of the attractors A., we notice first that by the uniform
L>(£2.) bounds of the attractors we have

U MA

0<e<en

is a bounded set in Ug®. Hence, by the attractivity properties of Ay, for a fixed n > 0 there
exists a time 7 > 0 such that

distyp (T0(r) (Mepe), A) = inf [ To(r)(Mepe) = pllug <n. Ve €Ay 0<e <
0
which implies that
diStUg’ (EET0<T> (MESOE)7 EEAO) < n, VSOE € A€7 0<e< €o

Using the convergence of the nonlinear semigroups with t = 7, there exists ¢; > 0
such that for 0 < e < ey,
|T(7, 02) — ETo(T, Me‘Ps)HUﬁ <n, Yo.e A, 0<e<er.
Hence,
distyr (To(7,¢2), Bodo) <, Vo € A, 0<2< ey,

From the invariance A, we have that
diSth ((1057 EEAO) <1, Vee € A€7 0<e<g

which implies (/5.4)). [

Remark 5.2. Observe that Proposition[5.1] proves the upper semicontinuity part of Theorem
23
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6. CONTINUITY OF LOCAL UNSTABLE MANIFOLDS AND OF ATTRACTORS

We already know that, if all equilibrium points of , which is the abstract version of
(1.2), are hyperbolic then they are all isolated and there is only a finite number of them, say
E = {el, -+ ,er}. In this case, we also know that there is an gy > 0 such that the set of

equilibria of ([2.6]), which is the abstract version of (1.1]), & = {el,--- ,e™} forall 0 < e < &

and e’ £, el for 1 < i < m (see Theorem 2.3 of [3]). Moreover, we also know that the
linear unstable manifolds associated to €5 converge to the linear unstable manifold of €5, see
Theorem 2.5 of [3]. For each el € &, € € [0, 1], we define its unstable manifold

W*(el) = {n. € UP: there is a global solution & : R — U? of
(2-6) with £.(0) = n. such that &.(f) ‘—=° ¢/}
and its d-local unstable manifold as
Wi(el) ={n. € B(e!,5) C UP: there is a global solution ¢, : R — U? of
with £(0) = n., &(t) € B(el,4), V¢ <0, and & () = el}.

These definitions are standard and we refer to [9] for further properties of local unstable
manifolds.

In this section we show that the local unstable manifolds of e/, for j = 1,...,m fixed,
behaves continuously with ¢ in UP.

Proposition 6.1. Assume that eq € & is hyperbolic; that is, 0 ¢ o(Ay — f'(eo)I). By
Theorem 5.8 and Example 5.9 in [3], there are § > 0 and ey such that, there is a unique
e € & with ||e. — Ezeql|pr <9, for all 0 < e < eg. Then, there is 6 > 0 such that

e—0

diStUé)(Wéu(ee)a E€W§L(€0)) + diSth (EEW;(eo)u W(;L(€€>> —0
that is,

sup inf  [Ju. — Ecugllgr +  sup inf  |lu. — Ecugllgr — 0, ase — 0
ue €Wy (ec) uo €Wy (uo) uo€EWs (uo) us €Wy (ee)

Before proving this result, let us see how we can proceed to give a proof of our main result,
Theorem 2.5

Proof of Theorem [2.5} The upper-semicontinuity has already been proved in Proposition
from Section [f] Observe that to obtain the upper-semicontinuity of the attractors, we
have used the continuity of the nonlinear semigroups, but no gradient structure of the flows
have been used.

To obtain the lower-semicontinuity, we need to show that for each pg € Ay we have a
sequence of . € A., with the property that |¢. — E.@ol|yr — 0 as € — 0. To accomplish
this, we follow similar arguments as the one developed in [9], [10] or [2].

We are assuming that each equilibrium of the limiting problem & is hperbolic. This implies
that we have a finite number of them and that the flow Ty(¢) has a gradient structure, see
[4] and in particular, given ¢q € Ay it will lie in the unstable manifold of some ¢y € &. This
implies that there exist an element ¢y € Wi'(eg) and a 7 > 0 such that Ty(7, ¢9) = o, where
0 > 0 is the one from Proposition [6.1] Using the continuity of the local unstable manifolds
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obtained in Proposition , we have that there exists a sequence of elements ¢. € W (e.)
such that ||¢. — E.¢o||y» — 0. But, from the invariance of the attactor \A. under the flow
T, we have p. = T.(7, ¢.) € A.. Moreover,

HSOE - EE‘POHU? = HT€<77 (bs) - E€T0(7'7 ¢0)HU§
< ||Ts(7—7 ¢s) - EETO(TJ MECbE)HUZ;' + ”EeTO(Ta M€¢6) - EETO(Ta ¢0)||U§’

< M(7)77%e(e) + [[To(7, Mede) — To(T, do)llug
where we are using (5.3 and the fact that || E.[|ur ey = 1.
The continuity of the map T'(r,-) : Uy — Uy, the fact that [|¢o — Mc¢c|[yp — 0 as e — 0

and that c(e) — 0, shows that ||p. — E.pgl|yr — 0 as ¢ — 0. This concludes the proof of
Theorem 2.5 ]

Proof of Proposition 6.1 Let {e.} with e. € &, ¢ € [0,1], such |le. — E.eql|y» = 0.
Rewriting (2.6]) for w. = u. — e. to deal with the neighborhood of e. we arrive at

wy + Acw — fé(ee)w = f(w + 65) - f(€5> - fé(ea)w- (61)

Let us denote by Vo = — f'(eq), Vo = —f'(e.). Using the hiperbolicity of eg, e. we consider
b < 0 and define o, Q(c?) as in (4.10]), see Remark )

Decomposing (/6.1)) with the aid of projection @ (o) and denoting by A the restriction of
A. 4V to the kernel of Q(c7), by B. the restriction of A, + V. to the range of Q(c7) and
making S-'v = Q(oF)w, 2 = (I — Q(oF))w we rewrite (6.1]) as

O+ Bov = Qo) Fe(Sev, 2)

24+ Az= (I —Q(c))F.(Sv, 2),
where F.(0,0) = 0 and F/(0,0) = 0. Proceeding as in Example 5.9 in [3] we have that, given
p > 0 there is a 6 > 0 such that

IF(S0, s < pr ~
HFE(SEUJ Z) - F&(Ssva Z)HUg < p(HU -V

for all (v, z) € Bs(0,0) and for all € € (0,1]. Since we are interested only in the behavior
of the solutions near (0,0) we cut F. outside Bs(0,0) in such a way that it satisfies
globally.

Proceeding as in [2], [7] we can show that for a suitably small p > 0, there is an unstable
maunifold for e,

(6.2)

(6.3)

zo + 1z = o).

S ={(v,2): z2=%%(v), veR"}

)

where Xf : R" — Ker(Q.) is bounded and Lipschitz continuous. Furthermore
* * e—0
sup [[S2(v) — BLS5(0) o 0.

veR™

Let us sketch the proof of existence of the unstable manifold as a graph and prove its
continuity. Let ¥, : R” — Ker(Q.) such that

IZell == sup [Ee(0)llvr < D, [[Ee(v) = Xe(0)lor < Lo — 0. (6.4)
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If v.(t) = ¢(t, 7,m, %) denotes the solution of

dv,
d_qu + Bv. = F.(Seve, Xe(ve)), fort <7, v.(1) =n,
We seek for a fixed point X} of
B(E)) = [ e H N Q)RS o s))ds, cE . (69)

in the class of Lipschitz maps Y. : R" — Ker(Q.) which are globally bounded with bound
D and globally Lipschitz with Lipschitz constant L.
Note that, from (4.13)),

T

10 (m)llor = / pC(r — 5)Te Mg, (6.6)

and for suitably chosen p we have that [|®(%.)]| < D.
Next, suppose that ¥, and Y. are functions satisfying (6.4]), n, 7 € R™ and denote v.(t) =

w(tu T, 26)7 @€<t) - w(t, T, 77, 25) Then,

U€<t) — f)s(t) = @_BE (t_7)<77 — 77) + / e_BE (t_s)Qs[Fe(Sevea Ea (U€>> - FE(SE{J& iff(@E))]ds‘

T

And

Jo-(t) — ()l < CM 1 — e
+C / Te”“*”IIQEFg(SEvg, S (ve)) = QeFo(S:0e, 2 ()| [rnds
< Gty = i
+pC/Te‘b(t‘s) <H25('Ua) — ig(ﬁa)HUf + |lve — {)a"Rn) ds
< D = iz
[0 (1800 = Seli)lor + (1 + Dl = el ) s
< Ce= | — e
+pC [0 (W Do = 2+ 1. - £
< ey = i
+pC(1+ L) [ Mo, b aads + pCIS, — Sy [ ee-0as.

t t

Uf) dS

Let 0() = €7 (1) = .(0) . Then,
o(6) < Clly =il + pC | X7 sl %, = Eulloz + Cop (14 L) [ o(5)ds.
t t
By Gronwall’s inequality

[0 (t) = 5= ()l < [Cllm = illzne” 7 + pC / e?t=9)ds]|| S, — S||gp)erCU+RED)
t .
< [Clin = dillen + pCHT[[B = Xe [l Jleme0+RED
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Thus,

[(2)(n)— (I)(ie)(ﬁ)HUg
<C|[(r— s)*'Ve*b(T*S)HFg(SEvg, Ye(ve)) — Fo(S:te, 25(65))||L2(Qs)d8

N

>

Q
\

(r = 5) e ([ Se(e) = (@) g + Jve — e ) ds

<pC [ (=57t [k Do = e + ]2 - S]] ds.

Using the estimates for ||v. — c||gn We obtain

pC(1+ L)
b(b—pC(1+ L))

[®(3:)(n) — ‘I)(is)(ﬁ)u < pCT(1 —7) |:b1+fy+

pC*(1+ L)I'(1 —7)
1+

] 5. = Sl

(b— pC(1+ L)) 1+ 7 — 7l[Rn-
Let
100 =010 =) [ e
and

_ pC (14 L)T(1— )
W) =G =t py

It is easy to see that, given 6 < 1, there exists a py such that, for p < po, In(p) < 0 and
I,(p) < L and

12(32) () = @)@z < Ll — 7'l + 0][1%e — ]| (6.7)

The inequalities (6.6) and (6.7)) imply that G is a contraction map from the class of
functions that satisfy (6.4) into itself. Therefore, it has a unique fixed point ¥ = ®&(X}) in

this class. The invariance follows in the usual manner.

The fact that the graph is the whole unstable manifold follows (taking the limit as ¢y tends
to —oo) from the following: If w(t) = (v(t),2(t)), t € R, is a global solution of which
is bounded as t — —oo, there are constants M > 1 and v > 0 such that

l2(8) = B2 (u(®))llr < Mt —to) e [2(to) — ZE(v(to))

pe, to <t. (6.8)

The proof of can be carried out following the steps in the proof of (A.8) in [6], using the
singular Gronwall’s inequality instead of the usual one, and noting that ¢ can be considered
fixed for this purpose.

It remains to prove the continuity of the unstable manifolds. This is accomplished in the
following manner. If 0 < e < gq is such that the unstable manifold is given by the graph of
2r, 0 < e < g, we want to show that

sup [[X2(n) — EXo(n)llor = (132 — EX][|

neRr”
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It follows from Proposition [4.3] that
1352 (ne) = E=E5(n)l|uz

/He TN I=Q0)) Fu(Seve, B2 (ve)) = e P (I=Q(o)) Fo(Sovo, Zj(vo)) e
\/_ le™ 40T = Qo) [FL(Seve, B2 (v2)) = E-Fo(Sovo, T (vo))] ueds

s [ e A = QU — B R = Qo) ME (S S0 ez

— 00

s / le= 40T = Qo) [FL(Seve, B2 (v2)) = Fu(Ex(Sev0, i (v0))) 2 ds

—00

+/T e~ A=) (I — Qo) — E.e™T=)(I — Q(o ) M) E. Fy(Sovo, S(vo))||yeds

—0o0

< 0/ eI — )| Fa(Seve, TE(v2)) — Fo(B(Sovo, Zg(w0)))|vads

— 00

L Cple) / | Fu(Seve, B2 (02)) oy ds

o0

< PO ple) + pCbT'T(L = 7) |2 — B3|

T

+pC(1+ L)/ e T (1 — 8)7V||v. — vol|rnds.

B (6.9)
Thus, it is enough to estimate ||v. — vg||gn. Note that
Hve - UOHR" < / ||eiBE(tis) - eiBO(tis)H ”Fs(Sevav 2:(%))||R"ds
t T
[ e P (St S2(01)) = FolSaves Zi0) s
t T
< pMb~Ho(1) + 1|22 — S5l I + pC (1 + L)/ v, — vo||gnds
t
Therefore
[ve — vollrr < PCH™" [o(1) + || S5 — Eg[|] e PCUHHE=0
which shows that
e—0
sup [|S2(n) — Sl =0,
/'76 7L
This proves the result. u

7. CONTINUITY OF ATTRACTORS IN OTHER NORMS

In this section we study the continuity of attractors in other norms and very specially in
the norm of the space U!?, see (2.8)). This continuity is obtained as a consequence of the
regularization properties of the nonlinear semigroups. As a matter of fact, in many instances

the attractors A., Ay live in better spaces X, and X, respectively for which the linear map
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E. : Xy — X, is well defined as well. We would like to give conditions that, once the
continuity of the attractors in U? is obtained, will guarantee the continuity results for the
attractors in these better spaces. In fact, the following result holds

Proposition 7.1. If there exists a 7 > 0 fized such that for each sequence of €, — 0,
¢, € Az, and ¢o € Ao with ||¢c, — E., ¢ollur, — 0 implies that

1T, (7, @e,) — E2, To(T, d0) | x.,, — 0 (7.1)

then, the upper semicontinuity of the attractors in UP implies the upper semicontinuity in
X. and the lower semicontinuity of the attractors in U? implies the lower semicontinuity of
the attractors in X..

Proof: Assume we have a family of ¢. € A.. From the invariance of the attractors under
the semigroup T, we have that there exist ¢. € A. with T.(7, ¢.) = ..

If the attractors are E.-upper semicontinuous in U?, we have that for each sequence €,, — 0,
there will exist a subsequence, that we still denote by ¢, and an element ¢ € Ay such that
¢, — B, ¢ollr. — 0 as e, — 0. With we get that if we define pg = Ty(7, ¢), we have
e, — Eenollx., — 0, which shows the E.-upper semicontinuity in X..

Assume now that the attractors are E.-lower semicontinuous in UP. If ¢y € Ay and if
we define ¢y € Ay with Ty(7, ¢o) = o, then there will exist a sequence of ¢. € A. with
¢ — Ectpol|yr» — 0 as € — 0. Using again, we get that ||p. — E.pol/x. — 0 which
shows the E.-lower semicontinuty in X.. [ |

With this result we can provide now a proof of Theorem

Proof of Theorem [2.7; We will apply Proposition proving first that
HTEn (7_7 ¢En) - EETLTO(Ty ¢0)HU€17’12 — O
for some 7 > 0 fixed, sequences €, — 0, ¢., € A., and ¢y € Ay with ||¢., — E., ¢ol| pr. — 0.
Observe first that
|7z, (7, 6e,) = B, To(7, d0) ||z <
ITe, (7, 6c,) = B, To(7, Mete, |2 + || BTo(7, Mebe, ) — Bz, To(7, 60) 2.2
and for a fixed 7 > 0,

HEETO(T7 Ms¢en) - EEHTO(T7 (bO)”UslﬁQ < HT()(T, Me(ben) - TO(Tv §Z§O)HU0L2 — 0

since Ty(,-) : UY — Uy** is continuous, see [4] .

To estimate the first term of the second line of (7.2]) we use the Variation of Constants
Formula (5.1)) for € € [0, 1] and with simple computations we obtain

(7.2)

||Ta(t>¢a) - EaTO(t> Ma¢£)||U61’2 < ||6_A5t¢8 - Eae_AOtMa¢6||UEL2

t
n / | (e =) — E.e UML) f(T0(s, 6.)) o2 ds (73)
. .

+ / | BN (f(TL(s,6.)) — fo(BTo(s, Mero))) g ds, < € [0, 0]
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But note that A. € C(Q.) for 0 < € < &9, Ay C C(Q)®C([0,1]) and that we have uniform
bounds in these spaces.
If we are able to obtain the following two estimates:

le™< = Bee ™' M.|| 1 iy < Ct7v(e), t>0. (7.4)

(Re),U:"?)
for some 0 < v < 1 and with v(¢) — 0 as e — 0, and

He—AtHﬁ(Up 12 < Ct 0 > 0. (7.5)

for some 0 < B < 1, then using and (| . in and using the convergence of the
nonlinear semigroup in Up we obtam that [|7.(¢, gbg) E cTo(t, Meoe)|| 2 — 0 as e — 0.
The proof of - is in [4] Remark 3.2.
Hence we just need to ShOW (7.4). To obtain this estimate we need some extra resol-
vent estimates, similar to the ones obtained in Section [3.1l To that end we introduce the
continuous extension operator

EC: C()@C(0,1) —  C()

Q
(wa,vs) - Eg(w€7v€) _ {w87 T € (76)

v, ¥ € Rg,

where

Ue() =v(8) + he(s) (we(0,y) —v:(0)) + he(1 — 8) (we(1,y)—ve(1)), = = (s,y) € R, (7.7)
and the function hs(s) = h(2), where h: RT™ — [0,1] is a C* function such that

h(s) = {1, for s € [0,1/4],

s
0

0, fors>3/4

and |/ (s)| < C. B
Observe that with this definition E¢(w.,v.) is always a continuous function in €. if
(w.,v.) € C(Q) & C(0,1). Moreover, if (w,v.) € Uy then, ES(w.,v.) € H'(Q.).

We also need the following lemmas whose proofs will be provided later.

Lemma 7.2. Let A € p(A:) N p(Ag), then the following holds
A+ A7 = Ee(A+ Ag) M = (I = MA: + N)7)(AT — EFAGT M) (I — AE(Ap + A) 7' Me)
+ (I = MA+ N1 (B — E.) (Ag+ )"

Lemma 7.3. There is a constant C' > 0 such that for each \ € ¥y we have
e

1+|\z" (7.8)
11 = A(Ac + N (ES = E) (Ao + N) 7'M || pemecirey, m@em r)) < O

Lemma 7.4. There is a constant C' > 0, independent of €, such that

(1) 1E(1 = AM(Ao + ) DM fello@yeory < C ||fa||c O)aC(R.)’
(i) [I(7 = AM(Ae + A) el g,y < C ||g€HH1

I(ES — E.) (Ao + /\)71M€||L(C(§)€BC(R5),H1(Q)®H1(RE)) <C
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Lemma 7.5. There exists a constant C' > 0 such that for all X € ¥y and all f. € C(Q) @
C(R.),

1A A0 = B+ N ML ooy < O M illeqociny - (79)

Clearly, from Lemma and the expression of the differences of the semigroups in terms
of the integral of the difference of the resolvents as in (4.9)), we have that there is a constant
C > 0 such that

—Act —Aot N/2,—1
e " — E.e "M, HL 6C () Qe (R S CF 1241, (7.10)
On the other hand,

o=t — Eee™ M. | 1 oy o ) <

—Act

le

He* € (L2(Q:),H(Q)) + HeiAOtHﬁ(Ué’,Hl(Q)@Hl(O ) < C’t*ﬂ

for some 3 with 1/2 < 8 < 1, see [4], Remark 3.2. . Interpolating (7.10) and (7.11)), we have
that that, for any n < 1,

+ HE e M. ||£(L°° Q.

L(L>(Q2), H (Q)@®H (R.)) ) HUQBHL(R.)) S (7.11)

—Act — Aot N/24—(n+(1-n)8
He — Bee™ ™ MEHE(LOO(QE),Hl(Q)@Hl(Ra)) < Cenf2grimmo), (7.12)
Choosing = < 7 < 1 so that nN/2 > (N —1)/2, the result follows with y = n+(1—n)3 < 1.
This shows estimate ([7.4) and the theorem is proved. [ |

Remark 7.6. We may also obtain the convergence of the attractors in some other norms.
As a matter of fact if K is a compact subset of Q\{Py, P.} we can easily obtain uniform
bounds of all the attractors for instance in CV(K). This estimates may be obtained with
an appropriate cut-off function and using standard reqularity properties of the nonlinear
semigroups (we are far away from the channel R.). Hence, since we have obtained already
the continuity (lower or upper) of the attractor in LP(K), with the compact embedding of
C(K) in C'" (K) we also get the continuity (lower or upper) in C*" (K).

We provide now the proofs of the different lemmas we have stated above.
Proof of Lemma This lemma is obtained in a similar way as Lemma [3.5] ]

Proof of Lemma Let f. € C(Q) ®C(R.) and define K, := (ES — E.)(Ag+A) "M f. =
Ze — 2e,, where Z. = Ec(Ag+ N\ 'Mf. e 2. = E.(Ag + \) ' M f..
Observe that (Ag + \)"'M f. = (w., v.) where

_Aw€+)\w€:fs; e
due — ), z € 00
1 (7.13)
__<9U55 S+)\U€:Mf57 S € (0,1)
g

= 0:(8) + he(s) (w(0,y)—v:(0)) + he(l — 8) (we(1,y)—v:(1)), V(s,y) € R. and
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Also note that since K. = 0 in €2, we have || K. ||z o g = K- ||H1 - Moreover,
1Koy <2 [ [ o) f(0.0) = 0.(0) dsdy
o Jre

1
w2 [ )P () ) dsdy
1—e JTI's

< Cye ||w5||g(§)

Now note that hl(s) = e 'h/(z/e), h.(1 —s) = —e 'h/((1 — s)/e). Hence, with similar
estimates as above,

VK. gy <2 [ P [ (0.9 = 0n(0) dsdy
0 Is

1
w2 [ = [ ) = o) dsdy

rs
1
+2/ |he(s ] |V we (0, y)| dsdy+2/ |h€(1—5)|2 ]Vyws(l,y)Fdsdy
1-¢ Is
<CeN ||wa||c1(§)

where we have used that / / rdsdy = O(eV).

The following estimates holde(see [12]), for some C' > 0,

C
HweHC(ﬁ) S o Hfch@) (7.14)
Al +1
C
[wellermy < DYEEES] 1felle) - (7.15)
Using ((7.15) we have that
oN/2
||KE||H1(R5) SComm— |/\|1/2 +1 ”fs“C (716)
which shows the first inequality of ([7.8]).
On the other hand we also have that
1 €N/2

IMA AN Ky, < A |Kll 2 ny < C (7.17)

and
(I = XA+ A) Y (EE = E) (Ao + A" M fe|lm@om (r.)
<K @ re) + [IAMA + )T E| 0 g

£N/2

C |/\|1/2 +1 ||f€“C
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Proof of Lemma It follows easily from the definition of the extension E. and of
the projection M, that [|E|| z ze@)ar=0.1),00.)) = 1 and [[Mel| 2z .) 1 @)or=01)) < 1-
Hence,

| B=Ao (Ao + X) 7" M|| 1 e q < C||Ao(Ag+A)~ 7.18)

1
<)L (%)) HL(LOO(QE)@LOO(O,l)) (
Let f = (fa, fr,) € C(Q) ® L>(0, 1), be such that

(Ao +A) 7' f = (w,v). (7.19)

or equivalently

( —Aw+  w = fg, in Q

g—w =0, in 0N
o (7.20)
—g(gvs)s + A = fg,, in (0,1)
(- 0(0) = w(0), v(1) =w(1)
proceeding as in the proof of Proposition (1v), we have that
HwHC(ﬁ) < |)“ +1 HfQHc ) HUHC( ’)\| +1 (”fQHc + ”fRoHcc)1>
Since A()(AO + )\)71 =1- /\<A0 + )\)71, then
-1 _ -1
HAO(AO +A) fHC(ﬁ)@Loo(o,n - Hf — A4+ ) ch Q)BL>(0,1)
< flle@er=@n + € I le@er=o
< C 1 le@arewm) -
Applying this to ([7.18)), we have that
-1
||E5A0(AO + )‘) MHE(LOO(QS),LOO(QE)) Cv (721)
where C is independent of A and .
Part (i7) is immediate from the fact that A. is positive and self-adjoint. [
Proof of Lemma [7.5 The proof follows from Lemma [7.2] Lemma [7.3] Lemma [7.4] and
statement (3.8) from Proposition |3.3] n
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